A SYSTEMS AND PROCESS MODEL
FOR DATA EXPLORATION

BY

JOHN PETER LEE

ABSTRACT OF A DISSERTATION SUBMITTED TO THE FACULTY OF THE
COMPUTER SCIENCE DEPARTMENT
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF SCIENCE IN COMPUTER SCIENCE
UNIVERSITY OF MASSACHUSETTS LOWELL
1998

Dissertation Director: Georges G. Grinstein, Ph.D.
Professor, Department of Computer Science
Abstract

Database exploration is the process of extracting knowledge from databases using visual, analytic and database tools. Database exploration has two main modeling components: a *systems integration model* that integrates the various tools in support of data exploration tasks, and a *user-centered model* of the data exploration process itself. This thesis takes a dual approach to database exploration by (1) developing and implementing a *systems integration model* based on data exploration tasks, and (2) defining a *generalized data exploration process* model that captures the essence of data exploration sessions. The systems integration model maps between the data models and interaction styles of database and visualization *exploration domains*. The process model describes data exploration without regard for the exploration domain. Two key components of the process model are a set of exploration domain-independent *metrics* that characterize elements of the process, and a set of data exploration *interaction patterns* that characterize database exploration sessions. The generalized process model is then applied to the systems model and implementation.
Acknowledgments

There are many people who assisted me in countless ways during the course of this research. First and foremost, I wish to thank my wife, Amy, for her loving support and patience over the many years it took to produce this work. This thesis is dedicated to her. I am equally thankful for our son, Maxwell Edward Lee, our “aggressive explorer” who has put everything into perspective.

I wish to thank my thesis advisor, Georges Grinstein, who has always been encouraging and supportive of this work, and who has always inspired me to thing big. I still marvel at the breadth and depth of his intellect, creativity and compassion. I also wish to thank my thesis committee: Dan Bergeron, Haim Levkowitz and John Sieg, for their guidance in crafting this thesis. I consider myself fortunate to be able to work with such outstanding teachers.

I wish to thank the NASA Graduate Student Researchers Program for supporting three years of this effort, the financial assistance from the University of Massachusetts Lowell, and the support of past and present employers: Paul Breen (MITRE), Ed Campbell (BBN) and Lorne Grant (Spacetec IMC).

I wish to thank my sources of inspiration: Steven Munno, Wassily Kandinsky, Alexander Calder, George Chaikin, Michael Leyton, John Becker, Ernest Wantuch, Edward Abbey, SUWA and the Colorado Plateau. Finally, I wish to thank David Salzman for lighting the fire...
Table of Contents

List of Tables .. vi
List of Figures .. vii

CHAPTER 1 - INTRODUCTION ... 1
1.1 Problem Statement and Motivation ... 1
1.2 Thesis Goals ... 4
1.3 Thesis Contributions ... 5
1.4 Thesis Overview ... 7

CHAPTER 2 - LITERATURE REVIEW .. 10
2.1 Definition of Database Exploration .. 10
2.2 User-Centric Aspects of Database Exploration ... 14
2.3 Data-Centric Aspects of Database Exploration ... 39
2.4 Literature Review Summary ... 58

CHAPTER 3 - A SYSTEMS MODEL FOR DATABASE EXPLORATION............................... 60
3.1 A Data Exploration Scenario .. 60
3.2 A User-Centered Analysis of System Components ... 63
3.3 Exbase: An Integrated Database Exploration Environment 74
3.4 Systems Model Summary ... 99
3.5 Towards a Data Exploration Process Model .. 102

CHAPTER 4 - A GENERALIZED DATA EXPLORATION (GDE) MODEL 103
4.1 Data and Metadata ... 103
4.2 Data Entities .. 109
4.3 Data Derivations and Sequences ... 112
4.4 Data Derivation Graphs .. 120
4.5 Forward Derivation Paths ... 131
4.6 GDE Model Summary ... 136

CHAPTER 5 - DESCRIBING DATA EXPLORATION SESSIONS 138
5.1 Data Exploration State Revisited .. 138
5.2 Representing Data Exploration Sessions .. 140
5.3 Data Exploration Scope ... 146
5.4 Data Exploration Metrics ... 149
5.5 A Data Exploration Calculus .. 166
5.6 Data Continuity ... 174
5.7 Chapter Summary ... 179

CHAPTER 6 - APPLYING THE GDE MODEL AND METRICS 181
6.1 The General Approach ... 181
6.2 The Relational Database Specialization .. 191
6.3 The Iconographic Visualization Specialization 198
6.4 Interaction Patterns in Database Exploration 204
6.4 Chapter Summary ... 215

CHAPTER 7 - CONCLUSION ... 216
7.1 Thesis Summary ... 216
7.2 The Research in Context ... 223
7.3 Thesis Contributions .. 225
7.4 Future Work ... 227
7.5 Concluding Thoughts .. 233

Literature Cited ... 234
Additional Literature Used but not Cited ... 244
Biographical Sketch of the Author ... 245
List of Tables

Table 2-1. Comparison of task-level user-data interactions.. 21
Table 2-2. Comparison of approaches to process-level database interactions............. 36

Table 5-1. Visual representation taxonomy of forward derivation component graph.... 145
Table 5-2. Vertex-based metrics summary. ... 153
Table 5-3. The derivation directional unit vectors of Figure 5-14. 172

Table 6-1. Metric summary for the graph of Figure 6-1... 186
List of Figures

Figure 2-1.	User-Data Interaction Through Visualization and Database Systems	Page 13
Figure 2-2.	Data exploration interaction framework	Page 15
Figure 2-3.	Springmeyer’s task taxonomy (from Springmeyer 1992)	Page 17
Figure 2-4.	The stages of user activity in the performance of a task	Page 22
Figure 2-5.	Components of a problem behavior graph	Page 24
Figure 2-6.	The problem behavior graph for the cryptarithmetic problem	Page 25
Figure 2-7.	The visualization pipeline and cycle models	Page 26
Figure 2-8.	Scientific visualization process network of Felger and Astheimer (1991)	Page 28
Figure 2-9.	The history tree process model of Brodlie et al. (1993)	Page 28
Figure 2-10.	Scanning search strategy of Canter et al. (1985)	Page 29
Figure 2-11.	The data derivation model of Hachem et al. (1994)	Page 30
Figure 2-12.	Browsing session model of Kersten and de Boer (1994)	Page 31
Figure 2-13.	The history design thread of Chiueh and Katz (1994)	Page 32
Figure 2-14.	A data state tree from Carr et al. (1986)	Page 33
Figure 2-15.	An AnalysisMap, adapted from Oldford and Peters (1986)	Page 34
Figure 2-16.	GuideMaps and WorkMaps from Young and Lubinsky (1995)	Page 35
Figure 2-17.	The impedance mismatch between database and visualization systems	Page 41
Figure 2-18.	KDD system autonomy versus versatility, from Matheus et al. (1993)	Page 49

Figure 3-1.	The mapping between database relation and a line-oriented icon	Page 68
Figure 3-2.	An Exvis visualization of two MRI scans	Page 69
Figure 3-3.	The Exbase Interface, with primary data objects and operations	Page 75
Figure 3-4.	Exbase view structures, relevant transformations and interaction paths	Page 76
Figure 3-5.	The components of the Exbase local database view	Page 82
Figure 3-6.	Exbase Visualization View hierarchy	Page 89
Figure 3-7.	The Exbase Database Query user interface	Page 91
Figure 3-8.	The Exbase Visualization Manager user interface	Page 92
Figure 3-9.	The Exbase Visualization View user interface, with query visualization	Page 93
Figure 3-10.	Zooming in on coordinate axes-mapped attributes and one other attribute	Page 94
Figure 3-11.	Zooming in on all data attributes	Page 95
Figure 3-12.	Changing the data-to-visual primitive mapping	Page 96
Figure 3-13.	Increasing the icon radius graphical display setting	Page 97
Figure 3-14 (a).	The Exbase Session Log	Page 99
Figure 3-14(b).	The Exbase Session Log (continued)	Page 100

Figure 4-1.	Various kinds of d-derivation mappings	Page 113
Figure 4-2.	A graphical representation of a d-derivation sequence	Page 116
Figure 4-3.	Graphical representation of a d-graph	Page 120
Figure 4-4.	Creating a congruence graph	Page 122
Figure 4-5.	Creating a similarity graph	Page 123
Figure 4-6. A simple forward derivation component graph. ... 127
Figure 4-7. Graphical representations of a path and two semipaths. 129
Figure 4-8. A forward derivation path between two sets of data entities. 131
Figure 4-9. Completing a forward derivation... 133
Figure 4-10. The data lineage graph corresponding to Figure 4-6. 135

Figure 5-1. Visualization of the forward derivation component graph of Figure 4-4. ... 141
Figure 5-2. Bounds on repositioning vertices with increasing branching. 143
Figure 5-3. The graph of Figure 5-1 visualized as a summary graph. 144
Figure 5-4. A possible compressed summary graph of Figure 5-3. 145
Figure 5-5. The local scope of a single target vertex.. 147
Figure 5-6. The derivation path scope of a target forward derivation path. 148
Figure 5-7. A difference between indegree and number of incident derivations. 151
Figure 5-8. The fundamental vertex-based metrics and their relationship. 153
Figure 5-9. Comparing divergent vertices with the Derivation Ratio.......................... 156
Figure 5-10. Comparing convergent vertices with the Derivation Ratio....................... 157
Figure 5-11. Determining the derivation path depth.. 160
Figure 5-12. A one-dimensional view of data exploration.. 168
Figure 5-13. One-dimensional derivation speed and acceleration examples.................. 170
Figure 5-14. n-dimensional derivation directional unit vector example. 172
Figure 5-15. Examples of data continuity... 176
Figure 5-16. Temporal data continuity examples.. 178

Figure 6-1. Data exploration session summary graph example....................................... 184
Figure 6-2. Applying the data exploration calculus... 189
Figure 6-3. Relational database specialization labeling scheme..................................... 192
Figure 6-4. The zoom in interaction pattern.. 194
Figure 6-5. The zoom out relational database interaction pattern................................. 194
Figure 6-6. Relational database data panning interaction patterns.................................. 196
Figure 6-7. Iconographic visualization specification labeling scheme............................ 199
Figure 6-8. The spatial zoom in operation... 200
Figure 6-9. Spatial zoom out operation... 201
Figure 6-10. Spatial panning operation.. 202
Figure 6-11. The fundamental database-visualization data exploration......................... 204
Figure 6-12. Canonical database exploration session graph example............................ 206
Figure 6-13. Refinement before exploration pattern... 207
Figure 6-14. Querying a visualization derivation edge.. 209
Figure 6-15. Canonical Exbase exploration session graph example................................ 211
Figure 6-16. Dynamic query interaction pattern example.. 213

Figure 2-5: from Human Problem Solving, copyright 1972 Prentice Hall Publishers, reproduced by permission of Prentice-Hall Inc., Upper Saddle River, NJ 07458.